Glyphosate-induced anther indehiscence in cotton is partially temperature dependent and involves cytoskeleton and secondary wall modifications and auxin accumulation.
نویسندگان
چکیده
Yield reduction caused by late application of glyphosate to glyphosate-resistant cotton (Gossypium hirsutum; GRC) expressing CP4 5-enol-pyruvylshikmate-3-P synthase under the cauliflower mosaic virus-35S promoter has been attributed to male sterility. This study was aimed to elucidate the factors and mechanisms involved in this phenomenon. Western and tissue-print blots demonstrated a reduced expression of the transgene in anthers of GRC compared to ovules of the same plants. Glyphosate application to GRC grown at a high temperature regime after the initiation of flower buds caused a complete loss of pollen viability and inhibition of anther dehiscence, while at a moderate temperature regime only 50% of the pollen grains were disrupted and anther dehiscence was normal. Glyphosate-damaged anthers exhibited a change in the deposition of the secondary cell wall thickenings (SWT) in the endothecium cells, from the normal longitudinal orientation to a transverse orientation, and hindered septum disintegration. These changes occurred only at the high temperature regime. The reorientation of SWT in GRC was accompanied by a similar change in microtubule orientation. A similar reorientation of microtubules was also observed in Arabidopsis (Arabidopsis thaliana) seedlings expressing green fluorescent protein tubulin (tubulin alpha 6) following glyphosate treatment. Glyphosate treatment induced the accumulation of high levels of indole-3-acetic acid in GRC anthers. Cotton plants treated with 2,4-dichlorophenoxyacetic acid had male sterile flowers, with SWT abnormalities in the endothecium layer similar to those observed in glyphosate-treated plants. Our data demonstrate that glyphosate inhibits anther dehiscence by inducing changes in the microtubule and cell wall organization in the endothecium cells, which are mediated by auxin.
منابع مشابه
A cystathionine-β-synthase domain-containing protein, CBSX2, regulates endothecial secondary cell wall thickening in anther development.
Anther formation and dehiscence are complex pivotal processes in reproductive development. The secondary wall thickening in endothecial cells of the anther is a known prerequisite for successful anther dehiscence. However, many gaps remain in our understanding of the regulatory mechanisms underlying anther dehiscence in planta, including a possible role for jasmonic acid (JA) and H(2)O(2) in se...
متن کاملSugar and auxin signaling pathways respond to high-temperature stress during anther development as revealed by transcript profiling analysis in cotton.
Male reproduction in flowering plants is highly sensitive to high temperature (HT). To investigate molecular mechanisms of the response of cotton (Gossypium hirsutum) anthers to HT, a relatively complete comparative transcriptome analysis was performed during anther development of cotton lines 84021 and H05 under normal temperature and HT conditions. In total, 4,599 differentially expressed gen...
متن کاملEffect of glyphosate on auxin transport in corn and cotton tissues.
Basipetal auxin transport in 6-day-old dark-grown corn coleoptiles was severely inhibited by increasing levels of glyphosate applied during the transport period.The velocity of basipetal transport of [(14)C]indoleacetic acid in hypocotyls from 7-day-old cotton seedlings was significantly reduced when sublethal doses of glyphosate [N-(phosphonomethyl)glycine] were applied to the cotyledonary lea...
متن کاملResponse and Tolerance Mechanism of Cotton Gossypium hirsutum L. to Elevated Temperature Stress: A Review
Cotton is an important multipurpose crop which is highly sensitive to both biotic and abiotic stresses. Proper management of this cash crop requires systematic understanding of various environmental conditions that are vital to yield and quality. High temperature stress can severely affect the viability of pollens and anther indehiscence, which leads to significant yield losses. Cotton can resp...
متن کاملbHLH142 regulates various metabolic pathway-related genes to affect pollen development and anther dehiscence in rice
Apposite development of anther and its dehiscence are important for the reproductive success of the flowering plants. Recently, bHLH142, a bHLH transcription factor encoding gene of rice has been found to show anther-specific expression and mutant analyses suggest its functions in regulating tapetum differentiation and degeneration during anther development. However, our study on protein level ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 141 4 شماره
صفحات -
تاریخ انتشار 2006